Lagrangian relaxation — In the field of mathematical optimization, Lagrangian relaxation is a relaxation method which approximates a difficult problem of constrained optimization by a simpler problem. A solution to the relaxed problem is an approximate solution to the… … Wikipedia
Lagrange multiplier — Figure 1: Find x and y to maximize f(x,y) subject to a constraint (shown in red) g(x,y) = c … Wikipedia
Claude Lemaréchal — is a French applied mathematician. In mathematical optimization, Claude Lemaréchal is known for his work in numerical methods for nonlinear optimization, especially for problems with nondifferentiable kinks. Lemaréchal and Phil. Wolfe pioneered… … Wikipedia
Stress (mechanics) — Continuum mechanics … Wikipedia
Hyperelastic material — A hyperelastic or Green elastic material is an ideally elastic material for which the stress strain relationship derives from a strain energy density function. The hyperelastic material is a special case of a Cauchy elastic material. For many… … Wikipedia
Car-Parrinello method — The Car Parrinello method is a type of ab initio (first principles) molecular dynamics, usually employing periodic boundary conditions, planewave basis sets, and DFT.In contrast to Born Oppenheimer molecular dynamics wherein the nuclear (ions)… … Wikipedia
Mathematical economics — Economics … Wikipedia
Plebanski action — General relativity and supergravity in all dimensions meet each other at a common assumption:: Any configuration space can be coordinatized by gauge fields A^i a, where the index i is a Lie algebra index and a is a spatial manifold index. Using… … Wikipedia
Lagrange-Faktor — Lagranžo daugiklis statusas T sritis fizika atitikmenys: angl. Lagrangian multiplier vok. Lagrange Faktor, m rus. множитель Лагранжа, m pranc. multiplicateur de Lagrange, m … Fizikos terminų žodynas
Lagranžo daugiklis — statusas T sritis fizika atitikmenys: angl. Lagrangian multiplier vok. Lagrange Faktor, m rus. множитель Лагранжа, m pranc. multiplicateur de Lagrange, m … Fizikos terminų žodynas